12 research outputs found

    Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Get PDF
    Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson’s disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements

    Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh.

    Get PDF
    Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook 'Data for Good' and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel

    An interactive national digital surveillance system to fight against COVID-19 in Bangladesh

    Get PDF
    BackgroundCOVID-19 has affected many people globally, including in Bangladesh. Due to a lack of preparedness and resources, Bangladesh has experienced a catastrophic health crisis, and the devastation caused by this deadly virus has not yet been halted. Hence, precise and rapid diagnostics and infection tracing are essential for managing the condition and limiting its spread. The conventional screening procedure, such as reverse transcription polymerase chain reaction (RT-PCR), is not available in most rural areas and is time-consuming. Therefore, a data-driven intelligent surveillance system can be advantageous for rapid COVID-19 screening and risk estimation.ObjectivesThis study describes the design, development, implementation, and characteristics of a nationwide web-based surveillance system for educating, screening, and tracking COVID-19 at the community level in Bangladesh.MethodsThe system consists of a mobile phone application and a cloud server. The data is collected by community health professionals via home visits or telephone calls and analyzed using rule-based artificial intelligence (AI). Depending on the results of the screening procedure, a further decision is made regarding the patient. This digital surveillance system in Bangladesh provides a platform to support government and non-government organizations, including health workers and healthcare facilities, in identifying patients at risk of COVID-19. It refers people to the nearest government healthcare facility, collecting and testing samples, tracking and tracing positive cases, following up with patients, and documenting patient outcomes.ResultsThis study began in April 2020, and the results are provided in this paper till December 2022. The system has successfully completed 1,980,323 screenings. Our rule-based AI model categorized them into five separate risk groups based on the acquired patient information. According to the data, around 51% of the overall screened populations are safe, 35% are low risk, 9% are high risk, 4% are mid risk, and the remaining 1% is very high risk. The dashboard integrates all collected data from around the nation onto a single platform.ConclusionThis screening can help the symptomatic patient take immediate action, such as isolation or hospitalization, depending on the severity. This surveillance system can also be utilized for risk mapping, planning, and allocating health resources to more vulnerable areas to reduce the virus's severity

    Robust real-time identification of tongue movement commands from interferences

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1016/j.neucom.2011.09.018This study aimed to improve the accuracy and robustness of a real-time assistive human machine interface system by classifying between the controlled movements related tongue-movement ear pressure (TMEP) signals and the interfering signals. The controlled movement TMEP signals were collected during left, right, up, down, flicking and pushing tongue motions. The TMEP signals were processed and classified using detection, segmentation, feature extraction and classification. The segmented signals were decomposed into the time-scale domain using a wavelet packet transform. The variance of the wavelet packet coefficients and its ratio between low-to-high scales were defined as features and the intended tongue movement commands and interfering signals were classified using both a Bayesian and support vector machine (SVM) classifiers for comparison. The average classification accuracy for discriminating between the controlled movements and the interfering signals achieved 97.8% (Bayesian) and 98.5% (SVM). The classifiers were robust remaining at a similar performance level when generalised interferences from all subjects were used. It was shown that the Bayesian classifier performed better than the SVM in a real-time environment. The approach of combining the Bayesian classifier and the wavelet packet transform provides a robust and efficient method for a real-time assistive human machine interface based on tongue-movement ear pressure signals.UK Engineering and Physical Sciences Research CouncilISVR Rayleigh Scholarship, University of Southampton, UK(EPSRC; Grant number EP/F01869X/1

    Robust real-time identification of tongue movement commands from interferences

    Get PDF
    This study aimed to improve the accuracy and robustness of a real-time assistive human machine interface system by classifying between the controlled movements related tongue-movement ear pressure (TMEP) signals and the interfering signals. The controlled movement TMEP signals were collected during left, right, up, down, flicking and pushing tongue motions. The TMEP signals were processed and classified using detection, segmentation, feature extraction and classification. The segmented signals were decomposed into the time-scale domain using a wavelet packet transform. The variance of the wavelet packet coefficients and its ratio between low-to-high scales were defined as features and the intended tongue movement commands and interfering signals were classified using both a Bayesian and support vector machine (SVM) classifiers for comparison. The average classification accuracy for discriminating between the controlled movements and the interfering signals achieved 97.8% (Bayesian) and 98.5% (SVM). The classifiers were robust remaining at a similar performance level when generalised interferences from all subjects were used. It was shown that the Bayesian classifier performed better than the SVM in a real-time environment. The approach of combining the Bayesian classifier and the wavelet packet transform provides a robust and efficient method for a real-time assistive human machine interface based on tongue-movement ear pressure signals<br/

    Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh

    No full text
    Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook ‘Data for Good’ and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel
    corecore